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Network together to create a more complex model capable of solving complex
Fruit Classification, problems. The utilization of state-of-the-art pre-trained deep learning
Experimental-Comparative models such as AlexNet, GooglLeNet, and ResNet-50 was widely used.
Philippines However, such models were not explicitly trained for fruit classification

(Dyrmann, Karstoft, & Midtiby, 2016). The study aimed to create a new
deep convolutional neural network and compared its performance to fine-tuned models based on
accuracy, precision, sensitivity, and specificity.

Methods. An experimental-comparative study was used to create and determine the performance
of a new deep learning architecture as a tool for fruit classification. The performance of the newly
created deep learning architecture was compared to the performance of the pre-trained deep
learning models. The basic structure of deep learning architecture was followed. A total of six deep
learning architectures were created with varying numbers of convolutional layers. Three architectures
were integrated with a dropout layer to resolve the issue of overfitting. The architectures were trained
using the Fruits-360 dataset. Analysis of variance (ANOVA) with repeated measures determined
that the architecture with five convolutional layers and a dropout layer outperformed the other
architectures across all performance metrics. The architecture was later named Fruit114Net. AlexNet,
GoogleNet, and ResNet-50 were then fine-tuned using the Fruits-360 dataset. The pre-trained
models’ performance results, together with the Fruit114Net, were then compared and were subjected
to a careful data analysis using the same statistical tool.

Results. The overall performance of the deep convolutional neural network was based on the following
metrics: accuracy, precision, sensitivity, and specificity. Such metrics depicted how well the models’
performance was in classifying fruits. The Fruit114Net was able to achieve a near-perfect rate across
all performance metrics. The model was able to classify 114 classes of fruits found in the dataset.
Despite having such high ratings, statistical analysis revealed that the accuracy rate of Fruitl114Net
was significantly lower compared to the three fine-tuned deep learning models. Moreover, the
statistical results were also able to record lower rates in Fruitl14Net's precision and sensitivity. In
terms of specificity rate, the data revealed that Fruit114Net was significantly lower than GooglLeNet
and ResNet-50. On the other hand, it was observed that there was no significant difference between
the performance of Fruitl14Net and AlexNet. To conclude, the overall performance of Fruit114Net
was significantly lower compared to the fine-tuned models. Incidentally, Fruitl14Net efficiently
classified the fruit images in terms of computational power and memory. It can also be noted that
Fruitl114Net recorded the least time in training the network. Lastly, Fruit114Net also took the least
storage capacity compared to the fine-tuned models.

Conclusion. The study affirmed the previous observations from different studies that deep
convolutional neural network performs better as its depth and width increases. Fruitl14Net was a
new deep convolutional neural network that satisfactorily and efficiently classified the images found
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in the Fruits-360 dataset. The new deep convolutional neural network model correctly classified
the fruit images to their actual classes and reduced false-positive and false-negative results. The
performance of Fruitl14Net suggested that it can be used as an alternative model in classifying
fruits despite having statistically lower results compared to AlexNet, GooglLeNet, and ResNet-50. In
addition to this, the use of the fine-tuned models requires high computational power and longer
time while being fine-tuned to a new set of data. Such observations were highly accorded with
the complex architecture of the fine-tuned models, thereafter, making the Fruit114Net model more
amenable in solving fruit classification problems.

Practical Value of the Paper. This study’s findings provided additional baseline information
that can help those who are designing deep learning architecture, specifically those involved in
classifying different fruit varieties. The novel architecture’s applicability may also be explored in other
applications such as fruit recognition and fruit detection. Furthermore, automated fruit classification
may also help different sectors, namely, the producers, consumers, and government agencies directly
involved in fruit production.
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