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Introduction. Manual Fruit classification is the traditional way of 
classifying fruits. It is manual contact-labor that is time-consuming 
and often results in lesser productivity, inconsistency, and sometimes 
damaging the fruits (Prabha & Kumar, 2012). Thus, new technologies 
such as deep learning paved the way for a faster and more efficient 
method of fruit classification (Faridi & Aboonajmi, 2017). A deep 
convolutional neural network, or deep learning, is a machine learning 
algorithm that contains several layers of neural networks stacked 
together to create a more complex model capable of solving complex 
problems. The utilization of state-of-the-art pre-trained deep learning 
models such as AlexNet, GoogLeNet, and ResNet-50 was widely used. 
However, such models were not explicitly trained for fruit classification 
(Dyrmann, Karstoft, & Midtiby, 2016). The study aimed to create a new 

deep convolutional neural network and compared its performance to fine-tuned models based on 
accuracy, precision, sensitivity, and specificity.

Methods. An experimental-comparative study was used to create and determine the performance 
of a new deep learning architecture as a tool for fruit classification. The performance of the newly 
created deep learning architecture was compared to the performance of the pre-trained deep 
learning models. The basic structure of deep learning architecture was followed. A total of six deep 
learning architectures were created with varying numbers of convolutional layers. Three architectures 
were integrated with a dropout layer to resolve the issue of overfitting. The architectures were trained 
using the Fruits-360 dataset. Analysis of variance (ANOVA) with repeated measures determined 
that the architecture with five convolutional layers and a dropout layer outperformed the other 
architectures across all performance metrics. The architecture was later named Fruit114Net. AlexNet, 
GoogLeNet, and ResNet-50 were then fine-tuned using the Fruits-360 dataset. The pre-trained 
models’ performance results, together with the Fruit114Net, were then compared and were subjected 
to a careful data analysis using the same statistical tool.

Results. The overall performance of the deep convolutional neural network was based on the following 
metrics: accuracy, precision, sensitivity, and specificity. Such metrics depicted how well the models’ 
performance was in classifying fruits. The Fruit114Net was able to achieve a near-perfect rate across 
all performance metrics. The model was able to classify 114 classes of fruits found in the dataset. 
Despite having such high ratings, statistical analysis revealed that the accuracy rate of Fruit114Net 
was significantly lower compared to the three fine-tuned deep learning models. Moreover, the 
statistical results were also able to record lower rates in Fruit114Net’s precision and sensitivity. In 
terms of specificity rate, the data revealed that Fruit114Net was significantly lower than GoogLeNet 
and ResNet-50. On the other hand, it was observed that there was no significant difference between 
the performance of Fruit114Net and AlexNet. To conclude, the overall performance of Fruit114Net 
was significantly lower compared to the fine-tuned models. Incidentally, Fruit114Net efficiently 
classified the fruit images in terms of computational power and memory. It can also be noted that 
Fruit114Net recorded the least time in training the network. Lastly, Fruit114Net also took the least 
storage capacity compared to the fine-tuned models. 

Conclusion. The study affirmed the previous observations from different studies that deep 
convolutional neural network performs better as its depth and width increases. Fruit114Net was a 
new deep convolutional neural network that satisfactorily and efficiently classified the images found 
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in the Fruits-360 dataset. The new deep convolutional neural network model correctly classified 
the fruit images to their actual classes and reduced false-positive and false-negative results. The 
performance of Fruit114Net suggested that it can be used as an alternative model in classifying 
fruits despite having statistically lower results compared to AlexNet, GoogLeNet, and ResNet-50. In 
addition to this, the use of the fine-tuned models requires high computational power and longer 
time while being fine-tuned to a new set of data. Such observations were highly accorded with 
the complex architecture of the fine-tuned models, thereafter, making the Fruit114Net model more 
amenable in solving fruit classification problems.

Practical Value of the Paper. This study’s findings provided additional baseline information 
that can help those who are designing deep learning architecture, specifically those involved in 
classifying different fruit varieties. The novel architecture’s applicability may also be explored in other 
applications such as fruit recognition and fruit detection. Furthermore, automated fruit classification 
may also help different sectors, namely, the producers, consumers, and government agencies directly 
involved in fruit production. 
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